The electric field part of an electromagnetic wave in a medium is represented by
$E_x=0, E_y=2.5 \frac{N}{C}\, cos\,\left[ {\left( {2\pi \;\times\;{{10}^6}\;\frac{{rad}}{s}\;\;} \right)t - \left( {\pi \;\times\;{{10}^{ - 2}}\;\frac{{rad}}{m}} \right)x} \right]$,and $ E_z=0$ . The wave is
moving along $x$ direction with frequency $10^6 Hz$ and wavelength $100\,m$
moving along $x$ direction with frequency $10^6 Hz$ and wavelength $200\,m$
moving along $-x$ direction with frequency $10^6 Hz$ and wavelength $200\,m$
moving along $y$ direction with frequency $2\pi \times10^6 Hz$ and wavelength $200\,m$
Calculate the electric and magnetic fields produced by the radiation coming from a $100\; W$ bulb at a distance of $3\; m$. Assume that the efficiency of the bulb is $2.5 \%$ and it is a point source.
The electric fields of two plane electromagnetic plane waves in vacuum are given by
$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and
$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$
At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is
The magnetic field in a plane electromagnetic wave is given by $=2 \times 10^{-7} \sin \left(0.5 \times 10^3 x+1.5 \times 10^{11} t\right)$. This electromagnetic wave is .........
A radar sends an electromagnetic signal of electric field $\left( E _{0}\right)=2.25\,V / m$ and magnetic field $\left( B _{0}\right)=1.5 \times 10^{-8}\,T$ which strikes a target on line of sight at a distance of $3\,km$ in a medium After that, a pail of signal $(echo)$ reflects back towards the radar vitli same velocity and by same path. If the signal was transmitted at time $t_{0}$ from radar. then after how much time (in $\times 10^{-5}\,s$) echo will reach to the radar?
For the plane electromagnetic wave given by $\mathrm{E}=\mathrm{E}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$ and $\mathrm{B}=\mathrm{B}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$, the ratio of average electric energy density to average magnetic energy density is