The energy required to break one bond in $DNA$ is $10^{-20}\, J.$ This value in $eV$ is nearly
$0.006$
$6$
$0.6$
$0.0625$
An object of mass ' $m$ ' initially at rest on a smooth horizontal plane starts moving under the action of force $F=2 N$. In the process of its linear motion, the angle $\theta$ (as shown in figure) between the direction of force and horizontal varies as $\theta= kx$, where $k$ is a constant and $x$ is the distance covered by the object from its initial position. The expression of kinetic energy of the object will be $E =\frac{ n }{ k } \sin \theta$. The value of $n$ is $.....$
Consider a car moving on a straight road with a speed of $100\, m/s$. The distance at which car can be stopped is ........ $m.$ $[{\mu _k} = 0.5]$
The kinetic energy of a body of mass $3 \,kg$ and momentum $2 \,N-s$ is
If work is positive, then kinetic energy increases or decreases ?
A point particle of mass $0.5 \,kg$ is moving along the $X$-axis under a force described by the potential energy $V$ shown below. It is projected towards the right from the origin with a speed $v$. What is the minimum value of $v$ for which the particle will escape infinitely far away from the origin?