- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
Number of solutions of the equation $2^x + x = 2^{sin \ x} + \sin x$ in $[0,10\pi ]$ is -
A
$5$
B
$6$
C
$11$
D
$1$
Solution
$\because x \geq \sin x \forall x \in[0,10 \pi]$
$\Rightarrow x+2^{x} \geq \sin x+2^{\sin x} \forall x \in[0,10 \pi]$
and equality holds only at $x=0$
Standard 11
Mathematics