The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

  • A

    $ - \frac{1}{2} \le \alpha \le \frac{1}{2}$

  • B

    $ - 3 \le \alpha \le 1$

  • C

    $ - \frac{3}{2} \le \alpha \le \frac{1}{2}$

  • D

    $ - 1 \le \alpha \le 1$

Similar Questions

The general value of $\theta $ satisfying ${\sin ^2}\theta + \sin \theta = 2$ is

If $\alpha ,\,\beta ,\,\gamma ,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$ , then the value of $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to 

If $A, B, C, D$ are the angles of a cyclic quadrilateral taken in order, then
$cos(180^o + A) + cos(180^o -B) + cos(180^o -C) -sin(90^o -D)=$

The solution set of the equation $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ is

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is