- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
The equation of a common tangent to the conics $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ and $\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1$ is
A
$x + y = {a^2} - {b^2}$
B
$x + y = \sqrt {{a^2} - {b^2}} $
C
$x - y = \sqrt {{a^2} - {b^2}} $
D
$x + y = \sqrt {{b^2} - {a^2}} $
Solution
(b) The slopes of tangent on conic is
${m_1} = \frac{{b{x_1}}}{{a\sqrt {x_1^2 – {a^2}} }}$ and ${m_2} = \frac{{a{x_1}}}{{b\sqrt {x_1^2 + {b^2}} }}$
But tangent is common, so that ${m_1} = {m_2}$
==> $\frac{{b{x_1}}}{{a\sqrt {x_1^2 – {a^2}} }} = \frac{{a{x_1}}}{{b\sqrt {x_1^2 + {b^2}} }}$
By this equation we can find the value of ${x_1}$ and then ${y_1}$. Putting these values in $y – {y_1} = {m_1}(x – {x_1})$, we get the required equation.
Standard 11
Mathematics
Similar Questions
normal