Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

The vertices of a hyperbola are at $(0, 0)$ and $(10, 0)$ and one of its foci is at $(18, 0)$. The equation of the hyperbola is

A

$\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{144}} = 1$

B

$\frac{{{{(x - 5)}^2}}}{{25}} - \frac{{{y^2}}}{{144}} = 1$

C

$\frac{{{x^2}}}{{25}} - \frac{{{{(y - 5)}^2}}}{{144}} = 1$

D

$\frac{{{{(x - 5)}^2}}}{{25}} - \frac{{{{(y - 5)}^2}}}{{144}} = 1$

Solution

(b) $2a = 10$,  $a = 5$

$ae – a = 8$ or $e = 1 + \frac{8}{5} = \frac{{13}}{5}$

$b = 5\sqrt {\frac{{{{13}^2}}}{{{5^2}}} – 1} = 5 \times \frac{{12}}{5} = 12$

and centre of hyperbola$ \equiv (5,\,0)$   

$\frac{{{{(x – 5)}^2}}}{{{5^2}}} – \frac{{{{(y – 0)}^2}}}{{{{12}^2}}} = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.