- Home
- Standard 11
- Physics
The equation of motion of a projectile is: $y = 12x - \frac{5}{9}{x^2}$. The horizontal component of velocity is $3\ ms^{- 1}$ . Given that $g = 10\ ms^{- 2}$ , .......... $m$ is the range of the projectile .
$12.4$
$21.6$
$30.6$
$36.0$
Solution
$y=12 x-\frac{3}{4} x^{2}$
$\frac{d y}{d t}=12 \frac{d x}{d t}-\frac{3}{2} x \frac{d x}{d t}$
At $x=0: \quad \frac{d y}{d t}=12 \frac{d x}{d t}$
If $\theta$ be the angle of projection, then
$\frac{d y / d t}{d x / d t}=12=\tan \theta$
Also, if $u$ $=$initial velocity, then $u \cos \theta=3$
Hence, $\tan \theta \times u \cos \theta=36$ or $u \sin \theta=36$
Range, $R=\frac{u^{2} \sin 2 \theta}{g}=\frac{2 u^{2} \sin \theta \cos \theta}{g}$
$=\frac{2(u \sin \theta)(u \cos \theta)}{10}=\frac{2 \times 36 \times 3}{10}=21.6 \mathrm{m}$