An object is projected with a velocity of $20 m/s$ making an angle of $45^o$ with horizontal. The equation for the trajectory is $h = Ax -Bx^2$ where $h$ is height, $x$ is horizontal distance, $A$ and $B$ are constants. The ratio $A : B$ is ($g = 10 ms^{-2}$)

  • A

    $1:5$

  • B

    $5:1$

  • C

    $1:40$

  • D

    $40:1$

Similar Questions

The projectile motion of a particle of mass $5\, g$ is shown in the figure.

The initial velocity of the particle is $5 \sqrt{2}\, ms ^{-1}$ and the air resistance is assumed to be negligible. The magnitude of the change in momentum between the points $A$ and $B$ is $x \times 10^{-2}\, kgms ^{-1} .$ The value of $x ,$ to the nearest integer, is ...... .

  • [JEE MAIN 2021]

A cart is moving horizontally along a straight line with a constant speed of $30\,m / s$. A projectile is to be fired from the moving cart in such a way that it will retum to the cart (at the same point on cart) after the cart has moved $80\,m$. At what velocity (relative to the cart) must be projectile be fired? (Take $=10\,m / s ^2$ )

A projectile is fired at an angle of $30^{\circ}$ to the horizontal such that the vertical component of its initial velocity is $80\,m / s$. Its time of flight is $T$. Its velocity at $t=\frac{T}{4}$ has a magnitude of nearly $........\frac{m}{s}$

A projectile can have the same range $R$ for two angles of projection. If $t_1$ and $t_2$ be the times of flights in the two cases, then the product of the two time of flights is proportional to

  • [AIIMS 2006]

A cannon on a level plane is aimed at an angle $\theta $ above the horizontal and a shell is fired with a muzzle velocity ${v_0}$ towards a vertical cliff a distance $D$ away. Then the height from the bottom at which the shell strikes the side walls of the cliff is