The equation of the chord of the circle ${x^2} + {y^2} = {a^2}$ having $({x_1},{y_1})$ as its mid-point is
$x{y_1} + y{x_1} = {a^2}$
${x_1} + {y_1} = a$
$x{x_1} + y{y_1} = x_1^2 + y_1^2$
$x{x_1} + y{y_1} = {a^2}$
A circle $C_{1}$ passes through the origin $O$ and has diameter $4$ on the positive $x$-axis. The line $y =2 x$ gives a chord $OA$ of a circle $C _{1}$. Let $C _{2}$ be the circle with $OA$ as a diameter. If the tangent to $C _{2}$ at the point $A$ meets the $x$-axis at $P$ and $y$-axis at $Q$, then $QA : AP$ is equal to.
Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-
Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R (3,4)$ meet $x$ -axis and $y$ -axis at point $P$ and $Q$, respectively. If $r$ is the radius of the circle passing through the origin $O$ and having centre at the incentre of the triangle $OPQ ,$ then $r ^{2}$ is equal to
Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is
The line $2x - y + 1 = 0$ is tangent to the circle at the point $(2, 5)$ and the centre of the circles lies on $x-2y=4$. The radius of the circle is