9.Straight Line
hard

ત્રિકોણ $ABC$ ની બાજુઓ $AB$ અને $AC$ ના લંબદ્વિભાજકના સમીકરણો અનુક્રમે $x - y + 5 = 0$ અને $x + 2y = 0$ છે.જો બિંદુ $A$ એ $(1,\; - \;2)$ આપેલ હોય તો રેખા  $BC$ નું સમીકરણ મેળવો.

A

$23x + 14y - 40 = 0$

B

$14x - 23y + 40 = 0$

C

${\tan ^{ - 1}}(2)$

D

$14x + 23y - 40 = 0$

(IIT-1986)

Solution

(d)  Let the equation of perpendicular bisector $FN$ of $AB$ is $x – y + 5 = 0$ ……$(i)$

The middle point $F$ of $AB$ is $\left( {\frac{{{x_1} + 1}}{2},\frac{{{y_1} – 2}}{2}} \right)$ lies on line $(i)$. Therefore ${x_1} – {y_1} = – 13$…..$(ii)$

Also $AB$ is perpendicular to $FN$. So the product of their slopes is $-1$.

i.e. $\frac{{{y_1} + 2}}{{{x_1} – 1}} \times 1 = – 1$or ${x_1} + {y_1} = – 1$……$(iii)$

On solving $(ii)$ and $(iii)$, we get $B( – 7,6)$.

Similarly $C{\rm{ }}\left( {\frac{{11}}{5},\frac{2}{5}} \right)$.

Hence the equation of $BC$ is $14x + 23y – 40 = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.