કોઈ વાયુનું અવસ્થા સમીકરણ $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ મુજબ આપવામાં આવે છે. જ્યાં $P$ એ દબાણ, $V$ એ કદ, $\theta$ નિરપેક્ષ તાપમાન દર્શાવે અને $a$ અને $b$ અચળાંકો છે. $a$ નું પારિમાણિક સૂત્ર શું થાય?
$[M{L^5}{T^{ - 2}}]$
$[{M^{ - 1}}{L^5}{T^{ 2}}]$
$[M{L^{ - 5}}{T^{ -1}}]$
$[M{L^{ 5}}{T^{ 1}}]$
વર્તુળનું સમીકરણ $x^2+y^2=a^2$, જ્યાં $a$ એ ત્રિજ્યા છે, વડે આપવામાં આવે છે. જો ઉગમબિંદુને $(0,0)$ ને બદલે નવા મૂલ્ય આગળ ખસેડતા આ સમીકરણ બદલાય છે. નવા સમીકરણ : $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ માટે $A$ અને $B$ નાં સાચા પરિણામો ......... થશે. $t$ નું પરિમાણ $\left[ T ^{-1}\right]$ વડે આપવામાં આવે છે.
કણની સ્થિતિઉર્જા અંતર $x$ સાથે $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ મુજબ બદલાય છે. જ્યાં $A$ અને $B$ પરિમાણ ધરાવતા અચળાંક છે. તો $A/B$ નું પારિમાણિક સૂત્ર શું થાય?
એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?
પાણીમાં ઉત્પન્ન થતા તરંગની ઝડપ $v=\lambda^a g^b \rho^e$ અનુસાર રજૂ કરવામાં આવે છે, જ્યાં $\lambda, g$ અને $\rho$ અનુક્રમે તરંગની તરંગલંબાઈ, ગુરુત્વ પ્રવેગ અને પાણીની ધનતા છે. અનુક્રમે $a, b, c$ અને મૂલ્યો ........ હોય.
$l$ લંબાઈ અને $r$ ત્રિજયાવાળી નળીમાંથી ટર્પેન્ટાઇલ તેલ વહે છે. નળીના બંને છેડેના દબાણનો તફાવત $P$ છે. તેલનો શ્યાનતાગુણાંક $\eta=\frac{P\left(r^{2}-x^{2}\right)}{4 v l}$ સૂત્રથી આપવામાં આવે છે, જયાં $v$ એ નળીના અક્ષની $x$ અંતરે તેલનો વેગ દર્શાવે છે. $\eta$ નું પારિમાણિક સૂત્ર શું થાય?