किसी गैस का अवस्था समीकरण निम्न प्रकार दिया जाता है $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ जहाँ $P$ दाब, $V$ आयतन तथा $\theta $ परम ताप है तथा $a$ व $b$ नियतांक है। $a$ का विमीय सूत्र होगा
$[M{L^5}{T^{ - 2}}]$
$[{M^{ - 1}}{L^5}{T^{ 2}}]$
$[M{L^{ - 5}}{T^{ -1}}]$
$[M{L^{ 5}}{T^{ 1}}]$
यदि प्रकाश का वेग $(c)$, गुरुत्वाकर्षण नियतांक $(G)$ तथा प्लांक नियतांक $(h)$ को मूल मात्रक माना जाए तब नई पद्धति में द्रव्यमान की विमा होगी
किसी वियुक्त निकाय में किसी गैस के अणुओं द्वारा किया गया कार्य $W =\alpha \beta^{2} e ^{-\frac{x^{2}}{\alpha kT }}$ द्वारा निरूपित किया गया है, यहाँ $x$ विस्थापन, $k$-बोल्ट्ज़मान नियतांक तथा $T$ ताप है। $\alpha$ और $\beta$ स्थिरांक हैं। $\beta$ की विमा होंगी।
सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $MKSQ$ पद्धति में $Y$ की विमायें हैं
स्तम्भ I |
स्तम्भ II |
---|---|
$(i)$ क्यूरी |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ प्रकाश वर्ष |
$(B)$ $M$ |
$(iii)$ परावैद्युत सामथ्र्य |
$(C)$ विमाहीन |
$(iv)$ परमाणु भार |
$(D)$ $T$ |
$(v)$ डेसीबल |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
सही मेल का चुनाव कीजिए
सरल आवर्त गति करती किसी वस्तु का आवर्तकाल $T = {P^a}{D^b}{S^c}$ से प्रकट किया जाता है। यहाँ $P = $दाब, $D = $घनत्व और $S = $पृष्ठ तनाव है, तो $a,\,b,\,c$ के मान होंगे