Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M (-1,1)$ intersect the circle $C _{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{6}$
$\frac{5}{3}$
If the line $lx + my = 1$ be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then the locus of the point $(l, m)$ is
The line $lx + my + n = 0$ is normal to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$, if
Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is
Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .
Pair of tangents are drawn from every point on the line $3x + 4y = 12$ on the circle $x^2 + y^2 = 4$. Their variable chord of contact always passes through a fixed point whose co-ordinates are