The equation of the circle which passes through the point of intersection of circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$ and ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and having its centre on $y$ - axis, will be

  • A

    ${x^2} + {y^2} + 22x + 9 = 0$

  • B

    ${x^2} + {y^2} + 22x - 9 = 0$

  • C

    ${x^2} + {y^2} + 22y + 9 = 0$

  • D

    ${x^2} + {y^2} + 22y - 9 = 0$

Similar Questions

Radius of circle touching $y-$axis at point $P(0,2)$ and circle $x^2 + y^2 = 16$ internally-

Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)

If the variable line $3 x+4 y=\alpha$ lies between the two circles $(x-1)^{2}+(y-1)^{2}=1$ and $(x-9)^{2}+(y-1)^{2}=4$ without intercepting a chord on either circle, then the sum of all the integral values of $\alpha$ is .... .

  • [JEE MAIN 2021]

The number of common tangents of the circles given by $x^2 +y^2 - 8x - 2y + 1 = 0$ and $x^2 + y^2 + 6x + 8y = 0$ is

  • [AIEEE 2012]

A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to