The equation of the circle which passes through the point of intersection of circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$ and ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and having its centre on $y$ - axis, will be

  • A

    ${x^2} + {y^2} + 22x + 9 = 0$

  • B

    ${x^2} + {y^2} + 22x - 9 = 0$

  • C

    ${x^2} + {y^2} + 22y + 9 = 0$

  • D

    ${x^2} + {y^2} + 22y - 9 = 0$

Similar Questions

The circles ${x^2} + {y^2} = 9$ and ${x^2} + {y^2} - 12y + 27 = 0$ touch each other. The equation of their common tangent is 

Two circles of radii $4$ cms $\&\,\, 1\,\, cm$ touch each other externally and $\theta$ is the angle contained by their direct common tangents. Then $sin \theta =$

The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :

If a circle passes through the point $(1, 2)$ and cuts the circle ${x^2} + {y^2} = 4$ orthogonally, then the equation of the locus of its centre is

The equation of radical axis of the circles ${x^2} + {y^2} + x - y + 2 = 0$ and $3{x^2} + 3{y^2} - 4x - 12 = 0,$ is