वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं से गुजरने वाले एवं $y$ - अक्ष पर केन्द्र वाले वृत्त का समीकरण है

  • A

    ${x^2} + {y^2} + 22x + 9 = 0$

  • B

    ${x^2} + {y^2} + 22x - 9 = 0$

  • C

    ${x^2} + {y^2} + 22y + 9 = 0$

  • D

    ${x^2} + {y^2} + 22y - 9 = 0$

Similar Questions

वृत्त ${(x + a)^2} + {(y + b)^2} = {a^2}$ व ${(x + \alpha )^2} + {(y + \beta )^2} = {\beta ^2}$ एक-दूसरे को लम्बवत् प्रतिच्छेद करेंगे यदि

एक वृत्त जिसकी त्रिज्या $12$ है, प्रथम पाद में स्थित है तथा दोनों अक्षों को स्पर्श करता है। एक दूसरे वृत्त का केन्द्र $(8,9)$ तथा त्रिज्या $7$ है। निम्न में से कौनसा कथन सत्य है

बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे

यदि वृत्त ${x^2} + {y^2} - 9 = 0$ और ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ एक दूसरे को स्पर्श करें तो $a$ का मान होगा

उस वृत्त का समीकरण, जो बिन्दु $(2a,\,0)$ से गुजरता है एवं जिसका वृत्त ${x^2} + {y^2} = {a^2}$ के सापेक्ष मूलाक्ष $x = \frac{a}{2}$ है, होगा