The points of intersection of circles ${x^2} + {y^2} = 2ax$ and ${x^2} + {y^2} = 2by$ are

  • A

    $(0, 0)$, $(a, b)$

  • B

    $(0, 0)$, $\left( {\frac{{2a{b^2}}}{{{a^2} + {b^2}}},\frac{{2b{a^2}}}{{{a^2} + {b^2}}}} \right)$

  • C

    $(0, 0)$, $\left( {\frac{{{a^2} + {b^2}}}{{{a^2}}},\frac{{{a^2} + {b^2}}}{{{b^2}}}} \right)$

  • D

    None of the above

Similar Questions

For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true

In the figure shown, radius of circle $C_1$ be $ r$ and that of $C_2$ be $\frac{r}{2}$ , where $r= \frac {1}{3} PQ,$ then length of $AB$ is (where $P$ and $Q$ being centres of $C_1$ $\&$ $C_2$ respectively)

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$

Consider the equation of circles

$S_1 : x^2 + y^2 + 24x - 10y + a = 0$

$S_2 : x^2 + y^2 = 36$ which of the following is not correct

Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}^{\prime}$ intersect at two distinct points, is ${R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve:

  • [JEE MAIN 2024]