The points of intersection of circles ${x^2} + {y^2} = 2ax$ and ${x^2} + {y^2} = 2by$ are

  • A

    $(0, 0)$, $(a, b)$

  • B

    $(0, 0)$, $\left( {\frac{{2a{b^2}}}{{{a^2} + {b^2}}},\frac{{2b{a^2}}}{{{a^2} + {b^2}}}} \right)$

  • C

    $(0, 0)$, $\left( {\frac{{{a^2} + {b^2}}}{{{a^2}}},\frac{{{a^2} + {b^2}}}{{{b^2}}}} \right)$

  • D

    None of the above

Similar Questions

The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :

The number of circles touching the line $y - x = 0$ and the $y$-axis is

The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each  other :-

The number of common tangents to the circles ${x^2} + {y^2} = 1$and ${x^2} + {y^2} - 4x + 3 = 0$ is

The equation of the circle through the point of intersection of the circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$, ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and $(3, -3)$ is