The equation of the common tangent to the curves $y^2 = 8x$ and $xy = -1$ is
$3y = 9x +2$
$y = 2x +1$
$2y = x+8$
$y = x +2$
Let the equation of two diameters of a circle $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ be $2 px - y =1$ and $2 x + py =4 p$. Then the slope $m \in(0, \infty)$ of the tangent to the hyperbola $3 x^{2}-y^{2}=3$ passing through the centre of the circle is equal to $......$
Let $\mathrm{P}$ be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$, in the first quadrant such that the area of triangle formed by $\mathrm{P}$ and the two foci of $\mathrm{H}$ is $2 \sqrt{13}$. Then, the square of the distance of $\mathrm{P}$ from the origin is
The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^2 -2y^2 -2=0$ to its asymptotes is
Let $H : \frac{ x ^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1$, a $>0, b >0$, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $4(2 \sqrt{2}+\sqrt{14})$. If the eccentricity $H$ is $\frac{\sqrt{11}}{2}$, then value of $a^{2}+b^{2}$ is equal to
The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is