- Home
- Standard 11
- Mathematics
The equation of the common tangents to the two hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are-
$y = ± x ± \sqrt {b^2 - a^2}$
$y = ± x ± \sqrt {a^2 - b^2}$
$y = ± x ± (a^2 -b^2)$
$y = ± x ± \sqrt {a^2 + b^2}$
Solution
Any tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
or $y=m x+c$
$\text { where } c=\pm \sqrt{a^{2} m^{2}-b^{2}}$
This will touch the hyperbola $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
if the equation $\frac{(m x+c)^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ has equal roots or $\mathrm{x}^{2}\left(\mathrm{b}^{2} \mathrm{m}^{2}-\mathrm{a}^{2}\right)+2 \mathrm{b}^{2} \mathrm{mc} \mathrm{x}+\left(\mathrm{c}^{2}-\mathrm{a}^{2}\right) \mathrm{b}^{2}=0$ is an quadratic eqaution have equal roots
then $4 b^{4} m^{2} c^{2}=4\left(b^{2} m^{2}-a^{2}\right)\left(c^{2}-a^{2}\right) b^{2}$
or $c^{2}=a^{2}-b^{2} m^{2}$
$\quad a^{2} m^{2}-b^{2}=a^{2}-b^{2} m^{2} \quad$ put $\left(c^{2}=a^{2} m^{2}-b^{2}\right)$
$m^{2}\left(a^{2}+b^{2}\right)=a^{2}+b^{2} \quad \Rightarrow \quad m=\pm 1$