Let a line $L$ pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$. If the line $L$ also passes through the point $(1,1)$ and touches the circle $17\left( x ^{2}+ y ^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is.

  • [JEE MAIN 2022]
  • A

    $\frac{2}{\sqrt{5}}$

  • B

    $\sqrt{\frac{3}{5}}$

  • C

    $\frac{1}{\sqrt{5}}$

  • D

    $\sqrt{\frac{2}{5}}$

Similar Questions

The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is

Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to

  • [JEE MAIN 2024]

The length of the latus rectum of the ellipse $5{x^2} + 9{y^2} = 45$ is

The equation of the ellipse whose vertices are $( \pm 5,\;0)$ and foci are $( \pm 4,\;0)$ is

A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$  of the ellipse, such that the two curves intersect in $4$  points. Let $'P'$  be any one of their point of intersection. If the major axis of the ellipse is $17 $ and  the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :