Let a line $L$ pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$. If the line $L$ also passes through the point $(1,1)$ and touches the circle $17\left( x ^{2}+ y ^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is.
$\frac{2}{\sqrt{5}}$
$\sqrt{\frac{3}{5}}$
$\frac{1}{\sqrt{5}}$
$\sqrt{\frac{2}{5}}$
An ellipse is inscribed in a circle and a point is inside a circle is choosen at random. If the probability that this point lies outside the ellipse is $\frac {2}{3}$ then eccentricity of ellipse is $\frac{{a\sqrt b }}{c}$ . Where $gcd( a, c) = 1$ and $b$ is square free integer ($b$ is not divisible by square of any integer except $1$ ) then $a · b · c$ is
The locus of mid-points of the line segments joining $(-3,-5)$ and the points on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :
The lengths of major and minor axis of an ellipse are $10$ and $8$ respectively and its major axis along the $y$ - axis. The equation of the ellipse referred to its centre as origin is
Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )
The eccentricity of the ellipse $25{x^2} + 16{y^2} - 150x - 175 = 0$ is