उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
$\frac{{{{(x - 2)}^2}}}{3} + \frac{{{{(y + 3)}^2}}}{4} = 1$
$\frac{{{{(x - 2)}^2}}}{4} + \frac{{{{(y + 3)}^2}}}{3} = 1$
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 1$
इनमें से कोई नहीं
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के अक्ष तथा स्पश्री के मध्य खींची गयी रेखा के मध्य बिन्दु का बिन्दुपथ होगा
यदि दीर्घवृत्त की नाभियाँ $( \pm \sqrt 5 ,\,0)$ तथा उत्केन्द्रता $\frac{{\sqrt 5 }}{3}$ है, तब दीर्घवृत्त का समीकरण है
दीर्घवृत्त $\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ का केन्द्र है
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
दीर्घवृत्त $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ की नाभियाँ हैं