उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ  $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा

  • A

    $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{11}} = 1$

  • B

    $\frac{{{x^2}}}{6} + \frac{{{y^2}}}{{\sqrt {11} }} = 1$

  • C

    $\frac{{{x^2}}}{6} + \frac{{{y^2}}}{{11}} = 1$

  • D

    इनमें से कोई नहीं

Similar Questions

मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा

उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि  $(3, -3)$ और संगत शीर्ष  $(4, -3)$ है, होगा   

$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है

  • [IIT 1998]

रेखा $lx + my - n = 0$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ को स्पर्श करेगी, यदि

दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की परस्पर लम्ब स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा