उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा
$\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{11}} = 1$
$\frac{{{x^2}}}{6} + \frac{{{y^2}}}{{\sqrt {11} }} = 1$
$\frac{{{x^2}}}{6} + \frac{{{y^2}}}{{11}} = 1$
इनमें से कोई नहीं
मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा
उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
$c$ के उन मानों की संख्या, जिनके लिये सरल रेखा $y = 4x + c$ वक्र $\frac{{{x^2}}}{4} + {y^2} = 1$ को स्पर्श करती है, है
रेखा $lx + my - n = 0$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ को स्पर्श करेगी, यदि
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की परस्पर लम्ब स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा