माना दीर्घवत्त $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ पद दूसरे चतुर्थाश में एक बिंदु $P$ इस प्रकार है कि $P$ पर दीर्घवत की स्पर्श रेखा, रेखा $x +2 y =0$ के लंबवत हैं। माना दीर्घवत्त की नाभियों $S$ तथा $S^{\prime}$ है तथा इसकी उत्केन्द्रता $e$ है। यदि त्रिभुज SPS' का क्षेत्रफल $A$ है तो $\left(5- e ^{2}\right) . A$ का मान है
$12$
$6$
$14$
$24$
यदि दीर्घवृत्त $x ^{2}+2 y ^{2}=2$ के चार शीर्षो के अतिरिक्त इसके सभी बिन्दुओं पर स्पर्श रेखायें खींची गई हैं, तो इन स्पर्श रेखाओं के निर्देशांक अक्षों के बीच के अंतः खंडों के मध्य बिन्दु निम्न में से किस वक्र पर है
शांकव $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$ के किसी बिन्दु पर नाभीय दूरी का योग है
वक्रों $y^2=2 x$ तथा $x^2+y^2=4 x$, के बिन्दु $(2,2)$ पर स्पर्श रेखाएँ तथा रेखा $\mathrm{x}+\mathrm{y}+2=0$ एक त्रिभुज बनाती है। यदि इस त्रिभुज के परिवृत्त की त्रिज्या है तो $\mathrm{r}^2$ बराबर है___________.
यदि $x^{2}+9 y ^{2}-4 x+3=0, x, y \in R$ हैं, तो $x$ तथा $y$ क्रमशः निम्न में से किस अंतराल में है?
एक दीर्घवृत्त, जिसकी नाभियाँ $(0,2)$ तथा $(0,-2)$ पर हैं तथा जिसके लघु अक्ष की लम्बई $4$ है, निम्न में से किस बिन्दु से होकर जाता है ?