उस दीर्घवृत्त का समीकरण, जिसकी एक नाभि $(4,0)$ है एवं उत्केन्द्रता $\frac{4}{5}$ है, होगा
$\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{5^2}}} = 1$
$\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1$
$\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{4^2}}} = 1$
$\frac{{{x^2}}}{{{4^2}}} + \frac{{{y^2}}}{{{5^2}}} = 1$
ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?
$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है
$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है
$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है
$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है
यदि दीर्घवृत्त के लघु अक्ष की लम्बाई, इसकी नाभियों के बीच की दूरी की आधी है, तो इस दीर्घवत्त की उत्केन्द्रता है :
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y-$अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ की उत्केन्द्रता है
यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है