The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y = 12$, is
$95{x^2} + 144{y^2} = 4655$
$144{x^2} + 95{y^2} = 4655$
$95{x^2} + 144{y^2} = 13680$
None of these
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
Eccentricity of the conic $16{x^2} + 7{y^2} = 112$ is
Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are
$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$
$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$
$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$
$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$