The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y = 12$, is

  • A

    $95{x^2} + 144{y^2} = 4655$

  • B

    $144{x^2} + 95{y^2} = 4655$

  • C

    $95{x^2} + 144{y^2} = 13680$

  • D

    None of these

Similar Questions

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$

  • [IIT 2003]

Let the ellipse, $E _1: \frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1, a > b$ and $E _2: \frac{ x ^2}{A^2}+\frac{ y ^2}{B^2}=1, A< B$ have same eccentricity $\frac{1}{\sqrt{3}}$. Let the product of their lengths of latus rectums be $\frac{32}{\sqrt{3}}$, and the distance between the foci of $E_1$ be $4$. If $E_1$ and $E_2$ meet at $A, B, C$ and $D$, then the area of the quadrilateral $A B C D$ equals:

  • [JEE MAIN 2025]

If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is

Eccentricity of the conic $16{x^2} + 7{y^2} = 112$ is

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]