If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of $90^{\circ},$ then which of the following relations is TRUE ?
$a+b=c+d$
$a-b=c-d$
$a-c=b+d$
$a b=\frac{c+d}{a+b}$
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
Minimum area of the triangle by any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with the coordinate axes is
On the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ let $P$ be a point in the second quadrant such that the tangent at $\mathrm{P}$ to the ellipse is perpendicular to the line $x+2 y=0$. Let $S$ and $\mathrm{S}^{\prime}$ be the foci of the ellipse and $\mathrm{e}$ be its eccentricity. If $\mathrm{A}$ is the area of the triangle $SPS'$ then, the value of $\left(5-\mathrm{e}^{2}\right) . \mathrm{A}$ is :
Find the equation for the ellipse that satisfies the given conditions: Length of minor axis $16$ foci $(0,\,±6)$
The eccentricity of the ellipse ${\left( {\frac{{x - 3}}{y}} \right)^2} + {\left( {1 - \frac{4}{y}} \right)^2} = \frac{1}{9}$ is