The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is

  • A

    ${x^2} + {y^2} + 32x - 4y + 235 = 0$

  • B

    ${x^2} + {y^2} + 32x + 4y - 235 = 0$

  • C

    ${x^2} + {y^2} + 32x - 4y - 235 = 0$

  • D

    ${x^2} + {y^2} + 32x + 4y + 235 = 0$

Similar Questions

Two circle ${x^2} + {y^2} = ax$ and ${x^2} + {y^2} = {c^2}$ touch each other if 

  • [AIEEE 2011]

The lengths of tangents from a fixed point to three circles of coaxial system are ${t_1},{t_2},{t_3}$ and if $P, Q$ and $R$ be the centres, then $QRt_1^2 + RPt_2^2 + PQt_3^2$ is equal to

The equation of the circle which passing through the point $(2a,\,0)$ and whose radical axis is $x = \frac{a}{2}$ with respect to the circle ${x^2} + {y^2} = {a^2},$ will be 

The point of contact of the given circles ${x^2} + {y^2} - 6x - 6y + 10 = 0$ and ${x^2} + {y^2} = 2$, is

If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda  > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of  $\lambda$ is