Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

The equation of the normal at the point $(a\sec \theta ,\;b\tan \theta )$ of the curve ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is

A

$\frac{{ax}}{{\cos \theta }} + \frac{{by}}{{\sin \theta }} = {a^2} + {b^2}$

B

$\frac{{ax}}{{\tan \theta }} + \frac{{by}}{{\sec \theta }} = {a^2} + {b^2}$

C

$\frac{{ax}}{{\sec \theta }} + \frac{{by}}{{\tan \theta }} = {a^2} + {b^2}$

D

$\frac{{ax}}{{\sec \theta }} + \frac{{by}}{{\tan \theta }} = {a^2} - {b^2}$

Solution

(c) Equation of normal to hyperbola $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$ at $(a\sec \theta ,b\tan \theta )$ is

$\frac{{{a^2}x}}{{a\sec \theta }} + \frac{{{b^2}y}}{{b\tan \theta }} = {a^2} + {b^2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.