The equation of the normal at the point $(a\sec \theta ,\;b\tan \theta )$ of the curve ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is
$\frac{{ax}}{{\cos \theta }} + \frac{{by}}{{\sin \theta }} = {a^2} + {b^2}$
$\frac{{ax}}{{\tan \theta }} + \frac{{by}}{{\sec \theta }} = {a^2} + {b^2}$
$\frac{{ax}}{{\sec \theta }} + \frac{{by}}{{\tan \theta }} = {a^2} + {b^2}$
$\frac{{ax}}{{\sec \theta }} + \frac{{by}}{{\tan \theta }} = {a^2} - {b^2}$
The combined equation of the asymptotes of the hyperbola $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$
If line $ax$ + $by$ = $1$ is normal to the hyperbola $\frac{{{x^2}}}{{{p^2}}} - \frac{{{y^2}}}{{{q^2}}} = 1$ then $\frac{{{p^2}}}{{{a^2}}} - \frac{{{q^2}}}{{{b^2}}} = 1$ is equal to (where $a$,$b$,$p$, $q \in {R^ + })$-
If the latus rectum of an hyperbola be 8 and eccentricity be $3/\sqrt 5 $, then the equation of the hyperbola is
Latus rectum of the conic satisfying the differential equation, $ x dy + y dx = 0$ and passing through the point $ (2, 8) $ is :
The eccentricity of the hyperbola $4{x^2} - 9{y^2} = 16$, is