- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
easy
If $\theta $ is the angle subtended at $P({x_1},{y_1})$ by the circle $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$, then
A
$\cot \theta = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$
B
$\cot \frac{\theta }{2} = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$
C
$\tan \theta = \frac{{2\sqrt {{g^2} + {f^2} - c} }}{{\sqrt {{s_1}} }}$
D
None of these
Solution

(b) $\cot \frac{\theta }{2} = \frac{{P{T_1}}}{{C{T_1}}} $
$= \frac{{\sqrt {{S_1}} }}{{\sqrt {{g^2} + {f^2} – c} }}$
Standard 11
Mathematics