Gujarati
10-1.Circle and System of Circles
easy

If $\theta $ is the angle subtended at $P({x_1},{y_1})$ by the circle $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$, then

A

$\cot \theta = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$

B

$\cot \frac{\theta }{2} = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$

C

$\tan \theta = \frac{{2\sqrt {{g^2} + {f^2} - c} }}{{\sqrt {{s_1}} }}$

D

None of these

Solution

(b) $\cot \frac{\theta }{2} = \frac{{P{T_1}}}{{C{T_1}}} $

$= \frac{{\sqrt {{S_1}} }}{{\sqrt {{g^2} + {f^2} – c} }}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.