वृत्त ${x^2} + {y^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}$ के बिन्दु $\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}},\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)$ पर स्पर्श रेखा का समीकरण है
$\frac{x}{a} + \frac{y}{b} = 1$
$\frac{x}{a} + \frac{y}{b} + 1 = 0$
$\frac{x}{a} - \frac{y}{b} = 1$
$\frac{x}{a} - \frac{y}{b} + 1 = 0$
यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो
वृत्त ${x^2} + {y^2} - 2x - 4y - 4 = 0$ पर स्पर्श रेखा का समीकरण जो रेखा $3x - 4y - 1 = 0$ पर लम्ब है, होगा
निम्न में से कौनसी रेखा $m$ के सभी मानों के लिये वृत्त ${x^2} + {y^2} = 25$ की स्पर्श रेखा है
वृत्त ${x^2} + {y^2} = 4$ के बिन्दु $(1,\sqrt 3 )$ पर खींची गयी स्पर्श रेखा एवं अभिलम्ब एवं धनात्मक $x$-अक्ष से बने त्रिभुज का क्षेत्रफल है
बिन्दु $\mathrm{P}(-3,2), \mathrm{Q}(9,10)$ तथा $\mathrm{R}(\alpha, 4)$ एक वृत्त $\mathrm{C}$ पर हैं, जिसका व्यास $P R$ ह। बिन्दुओं $Q$ तथा $R$ पर वृत्त $\mathrm{C}$ की स्पर्श रेखाएँ बिन्दु $\mathrm{S}$ पर मिलती है। यदि बिन्दु $\mathrm{S}$ रेखा $2 \mathrm{x}-\mathrm{ky}=1$ पर है, तो $\mathrm{k}$ बराबर है___________.