Gujarati
10-1.Circle and System of Circles
easy

वृत्त ${x^2} + {y^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}$ के बिन्दु $\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}},\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)$ पर स्पर्श रेखा का समीकरण है

A

$\frac{x}{a} + \frac{y}{b} = 1$

B

$\frac{x}{a} + \frac{y}{b} + 1 = 0$

C

$\frac{x}{a} - \frac{y}{b} = 1$

D

$\frac{x}{a} - \frac{y}{b} + 1 = 0$

Solution

(a) किसी बिन्दु पर स्पषी के सूत्र से,

$x\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}}} \right) + y\left( {\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)  $

$= \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}$

$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.