The equation of the tangent at the point $(1/4, 1/4)$ of the ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{{12}} = 1$ is
$3x + y = 48$
$3x + y = 3$
$3x + y = 16$
None of these
If the line $y = mx + c$touches the ellipse $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, then $c = $
The line $12 x \,\cos \theta+5 y \,\sin \theta=60$ is tangent to which of the following curves?
The equation of ellipse whose distance between the foci is equal to $8$ and distance between the directrix is $18$, is
Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$
$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;
$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;
$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.
Then which of the following options is/are correct?
$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal
$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$
$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$
$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$
Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is