दीर्घवृत्त  $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{{12}} = 1$के बिन्दु  $(1/4, 1/4)$ पर स्पर्श रेखा का समीकरण है

  • A

    $3x + y = 48$

  • B

    $3x + y = 3$

  • C

    $3x + y = 16$

  • D

    इनमें से कोई नहीं

Similar Questions

दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है

माना कि $T_1$ एवं $T_2$ दीर्घवृत (ellipse) $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ एवं परवलय (parabola) $P: y^2=12 x$ की दो भिन्न उभयनिष्ठ स्पर्श रेखाएं (distinct common tangents) हैं। माना कि स्पर्श रेखा $T_1, P$ एवं $E$ को क्रमशः बिन्दुओं $A_1$ एवं $A_2$ पर स्पर्श करती है और स्पर्श रेखा $T_2, P$ एवं $E$ को क्रमशः बिन्दुओं $A_4$ एवं $A_3$ पर स्पर्श करती है। तब निम्न में से कौन सा(से) कथन सत्य है(हैं)?

$(A)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $35$ वर्ग इकाई है

$(B)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $36$ वर्ग इकाई है

$(C)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-3,0)$ पर मिलती हैं

$(D)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-6,0)$ पर मिलती हैं

  • [IIT 2023]

दीर्घवृत्त $3{x^2} + 4{y^2} = 12$ के लिये नाभिलम्ब की लम्बार्इ है

यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है

  • [IIT 1999]

दिये गए अर्ध वृत्त में एक दीर्घवृत्त को अंतर्गत किया गया है। यह दीर्घवृत्त, अर्धवृत्त के एक वृत्तीय तोरण को दो भिन्न बिंदुओं में तथा अर्धवृत्त के व्यास को छूता है। यदि दीर्घ वृत्त का दीर्घ अक्ष और अर्ध वृत्त का व्यास समानान्तर है तो, ऐसे अधिकतम क्षेत्रफल वाले दीर्घवृत्त की उत्केन्द्रता का मान निम्न होगा:

  • [KVPY 2014]