The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is

  • A

    $x - y - 1 = 0$

  • B

    $x - y + 2 = 0$

  • C

    $x + y - 1 = 0$

  • D

    $x + y + 2 = 0$

Similar Questions

Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to

  • [JEE MAIN 2022]

The equation of a tangent to the hyperbola $4x^2 -5y^2 = 20$ parallel to the line $x -y = 2$ is

  • [JEE MAIN 2019]

The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is equal to (where $e$ is the eccentricity of the hyperbola)

If $5{x^2} + \lambda {y^2} = 20$ represents a rectangular hyperbola, then $\lambda $ equals

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$