Gujarati
10-2. Parabola, Ellipse, Hyperbola
easy

The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is

A

$x - y - 1 = 0$

B

$x - y + 2 = 0$

C

$x + y - 1 = 0$

D

$x + y + 2 = 0$

Solution

(a) Given hyperbola is, $\frac{{{x^2}}}{3} – \frac{{{y^2}}}{2} = 1$…..$(i)$

Equation of tangent parallel to $y – x + 5 = 0$ is

$y – x + \lambda = 0$

$ \Rightarrow $ $y = x – \lambda $…..$(ii)$

If line $(ii)$ is a tangent to hyperbola $(i),$ then

$ – \lambda = \pm \sqrt {3 \times 1 – 2} $   (from $c = \pm \sqrt {{a^2}{m^2} – {b^2}} $)

$ – \lambda = \pm \,1$

$\Rightarrow \lambda = – 1,\, + 1$.

Put the values of $\lambda $ in $(ii),$

we get $x – y – 1 = 0$ and $x – y + 1 = 0$ are the required tangents.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.