अतिपरवलय $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ की स्पर्श रेखा, जो रेखा $y - x + 5 = 0$, के समान्तर है, का समीकरण है
$x - y - 1 = 0$
$x - y + 2 = 0$
$x + y - 1 = 0$
$x + y + 2 = 0$
यदि एक वृत्त एक आयताकार अतिपरवलय $xy = {c^2}$ को क्रमश: बिन्दुओं $A, B, C$ तथा $D$ पर काटे तथा उनके प्राचल (parameter) क्रमश: ${t_1},\;{t_2},\;{t_3}$ तथा ${t_4}$ हों तो
एक वर्ग $ABCD$ के सभी शीर्ष वक्र $x ^{2} y ^{2}=1$ पर हैं। इसकी भुजाओं के मध्यबिंदु भी इसी वक्र पर हैं तो $ABCD$ के क्षेत्रफल का वर्ग है ............ |
वक्र ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ के बिन्दु $(a\sec \theta ,\;b\tan \theta )$ पर अभिलम्ब का समीकरण है
आयताकार अतिपरवलय की उत्केन्द्रता होगी
माना अतिपरवलय $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$ पर प्रथम चतुर्थांश में एक बिंदु $P$ तथा $H$ फी दो नामियों से बने त्रिभुज का क्षेत्रफल $2 \sqrt{13}$ है। तो $\mathrm{P}$ की मूल बिंदु से दूरी का वर्ग है।