- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The equation to the chord joining two points $(x_1, y_1)$ and $(x_2, y_2)$ on the rectangular hyperbola $xy = c^2$ is
A
$\frac{x}{{{x_{1\,}}\, + \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, + \,\,{y_2}}}$ $ = 1$
B
$\frac{x}{{{x_{1\,}}\, - \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, - \,\,{y_2}}} = 1$
C
$\frac{x}{{{y_{1\,}}\, + \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, + \,\,{x_2}}} = 1$
D
$\frac{x}{{{y_{1\,}}\, - \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, - \,\,{x_2}}}= 1$
Solution

note that chord of $ xy = c^2$ whose middle point is $(h, k)$ in $\frac{x}{h}\, + \,\frac{y}{k}\, = \,2$ further, now $2h = x_1 + x_2 $ and $2k = y_1 + y_2$
Standard 11
Mathematics
Similar Questions
normal