The equation to the chord joining two points $(x_1, y_1)$ and $(x_2, y_2)$ on the rectangular hyperbola $xy = c^2$ is
$\frac{x}{{{x_{1\,}}\, + \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, + \,\,{y_2}}}$ $ = 1$
$\frac{x}{{{x_{1\,}}\, - \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, - \,\,{y_2}}} = 1$
$\frac{x}{{{y_{1\,}}\, + \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, + \,\,{x_2}}} = 1$
$\frac{x}{{{y_{1\,}}\, - \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, - \,\,{x_2}}}= 1$
The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :
Locus of foot of normal drawn from any focus to variable tangent of hyperbola $4x^2-9y^2-8x- 18y = 41$ will be
A point on the curve $\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1$ is
Curve $xy = {c^2}$ is said to be
If $5x + 9 = 0$ is the directrix of the hyperbola $16x^2 -9y^2 = 144,$ then its corresponding focus is