The equation to the chord joining two points $(x_1, y_1)$ and $(x_2, y_2)$ on the rectangular hyperbola $xy = c^2$ is
$\frac{x}{{{x_{1\,}}\, + \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, + \,\,{y_2}}}$ $ = 1$
$\frac{x}{{{x_{1\,}}\, - \,\,{x_2}}}$+$\frac{y}{{{y_{1\,}}\, - \,\,{y_2}}} = 1$
$\frac{x}{{{y_{1\,}}\, + \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, + \,\,{x_2}}} = 1$
$\frac{x}{{{y_{1\,}}\, - \,\,{y_2}}}$+$\frac{y}{{{x_{1\,}}\, - \,\,{x_2}}}= 1$
Let the latus rectum of the hyperbola $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $\mathrm{b}^2$ is equal to $\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$, where $l$ and $\mathrm{m}$ are co-prime numbers, then $l^2+\mathrm{m}^2+\mathrm{n}^2$ is equal to______________.
Let $e_1$ be the eccentricity of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and $e_2$ be the eccentricity of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$, which passes through the foci of the hyperbola. If $e_1 e_2=1$, then the length of the chord of the ellipse parallel to the $\mathrm{x}$-axis and passing through $(0,2)$ is :
Let $\mathrm{P}$ be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$, in the first quadrant such that the area of triangle formed by $\mathrm{P}$ and the two foci of $\mathrm{H}$ is $2 \sqrt{13}$. Then, the square of the distance of $\mathrm{P}$ from the origin is
$P$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$ on the transverse axis. The tangent to the hyperbola at $P$ meets the transverse axis at $ T$ . If $O$ is the centre of the hyperbola, the $OT. ON$ is equal to :
The difference of the focal distance of any point on the hyperbola $9{x^2} - 16{y^2} = 144$, is