- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if
A
${p^2} = 2$
B
${p^2} = 5$
C
$5{p^2} = 2$
D
$2{p^2} = 5$
Solution
(d) The condition for the line $y = mx + c$ will touch the hyperbola
$\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$ is ${c^2} = {a^2}{m^2}$$ – {b^2}$
Here $m = – 1$, $c = \sqrt 2 p,$ ${a^2} = 9,\,\,{b^2} = 4$
We get $2{p^2} = 5.$
Standard 11
Mathematics