The equation to the sides of a triangle are $x - 3y = 0$, $4x + 3y = 5$ and $3x + y = 0$. The line $3x - 4y = 0$ passes through
The incentre
The centroid
The circumcentre
The orthocentre of the triangle
If the middle points of the sides $BC,\, CA$ and $AB$ of the triangle $ABC$ be $(1, 3), \,(5, 7)$ and $(-5, 7)$, then the equation of the side $AB$ is
Let the equation of two sides of a triangle be $3x\,-\,2y\,+\,6\,=\,0$ and $4x\,+\,5y\,-\,20\,=\,0.$ If the orthocentre of this triangle is at $(1, 1),$ then the equation of its third side is
Show that the path of a moving point such that its distances from two lines $3 x-2 y=5$ and $3 x+2 y=5$ are equal is a straight line.
If the three lines $x - 3y = p, ax + 2y = q$ and $ax + y = r$ form a right-angled triangle then
lf a line $L$ is perpendicular to the line $5x - y\,= 1$ , and the area of the triangle formed by the line $L$ and the coordinate axes is $5$, then the distance of line $L$ from the line $x + 5y\, = 0$ is