In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

If the line $3x + 3y -24 = 0$ intersects the $x-$ axis at the point $A$ and the $y-$ axis at the point $B$, then the incentre of the triangle $OAB$, where $O$ is the origin, is

  • [JEE MAIN 2019]

The area of a parallelogram formed by the lines $ax \pm by \pm c = 0$, is

  • [IIT 1973]

A straight line cuts off the intercepts $OA = a$ and $OB = b$ on the positive directions of $x$-axis and $y -$ axis respectively. If the perpendicular from origin $O$ to this line makes an angle of $\frac{\pi}{6}$ with positive direction of $y$-axis and the area of $\triangle OAB$ is $\frac{98}{3} \sqrt{3}$, then $a ^2- b ^2$ is equal to:

  • [JEE MAIN 2023]

A straight the through a fixed point $(2, 3)$ intersects the coordinate axes at distinct points $P$ and $Q.$ If $O$ is the origin and the rectangle $OPRQ$ is completed, then the locus of $R$ is:

  • [JEE MAIN 2018]

Two vertices of a triangle are $(5, - 1)$ and $( - 2,3)$. If orthocentre is the origin then coordinates of the third vertex are

  • [IIT 1983]