- Home
- Standard 11
- Mathematics
9.Straight Line
normal
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
A
$1$
B
$2$
C
$3$
D
$4$
Solution

As shown in above figure $\mathrm{AB}=\mathrm{BC}$
and $\mathrm{IB}=\mathrm{rcosec} \frac{\mathrm{B}}{2}, \mathrm{ID}=\mathrm{r}$
$ \Rightarrow \quad \frac{{{\rm{IB}}}}{{\rm{D}}} = \frac{{r\cos ec\frac{{\rm{B}}}{2}}}{{\rm{r}}} = \frac{3}{1}[{\rm{ where \,\,r\,\, is\,\, inradius }}]$
$ \Rightarrow \cos ec\frac{B}{2} = 3$
Standard 11
Mathematics