बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं

  • A

    $2x - y + 1 = 0,\,\,x + 2y - 2 = 0$

  • B

    $2x - y + 1 = 0,\,\,x + 2y + 2 = 0$

  • C

    $2x - y - 1 = 0,\,\,x + 2y - 2 = 0$

  • D

    $2x - y - 1 = 0,\,\,x + 2y + 2 = 0$

Similar Questions

$y - x + 3 = 0$, बिन्दु $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ पर किस वृत्त का अभिलम्ब है

वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं

माना वत्त $x ^{2}+ y ^{2}+ ax +2 ay + c =0,( a <0)$ द्वारा $x$-अक्ष तथा $y$-अक्ष पर बनाये गये अंतःखंडों की लम्बाईयोँ क्रमशः $2 \sqrt{2}$ तथा $2 \sqrt{5}$ हैं। तो इस वत्त की एक स्पर्श रेखा, जो रेखा $x +2 y =0$ के लम्बवत है, की मूलबिंदु से न्यूनतम दूरी बराबर है

  • [JEE MAIN 2021]

निम्नलिखित कथनों पर विचार करो

कथन $(A)$ : वृत्त ${x^2} + {y^2} = 1$, $x$-अक्ष के समान्तर दो स्पर्श रेखाएँ रखता है

कारण $(R)$ : वृत्त के बिन्दु $(0, \pm 1)$ पर $\frac{{dy}}{{dx}} = 0$

तब निम्नलिखित में से कौनसा कथन सहीं है

एक वृत्त जिसका केन्द्र $(a, b)$ है मूल बिन्दु से गुजरता है। मूल बिन्दु पर वृत्त की स्पर्श रेखा का समीकरण है