रेखा $y = mx + c$ उस वृत्त की, जिसकी त्रिज्या $r$ तथा केन्द्र $(a, b)$ है, अभिलम्ब होगी यदि
$a = mb + c$
$b = ma + c$
$r = ma - b + c$
$r = ma - b$
वृत्त ${x^2} + {y^2} + 2gx + 2fy + {c_1} = 0$ के किसी बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी
सरल रेखा $x +2 y =1$ निर्देशांक अक्षों को $A$ तथा $B$ पर काटती है। मूल बिन्दु, $A$ तथा $B$ से होकर जाने वाला वृत्त खींचा गया है, तो मूल बिन्दु पर वृत्त की स्पर्श रेखा की $A$ तथा $B$ से लम्बवत् दूरियों का योग है
उस वृत्त जिसका केन्द्र सरल रेखाओं $x-y=1$ तथा $2 x+y=3$ का प्रतिच्छेद बिंदु है, के बिंदु $(1,-1)$ पर खींची गई स्पर्श रेखा का समीकरण है
$\mathrm{a}^2$ के सभी मानों, जिनके लिए रेखा $\mathrm{x}+\mathrm{y}=0$, वृत $2 x^2+2 y^2-(1+a) x-(1-a) y=0$ के बिंदु $\mathrm{P}\left(\frac{1+\mathrm{a}}{2}, \frac{1-\mathrm{a}}{2}\right)$ से खींची गई दो भिन्न जीवाओं को समद्विभाजित करती है, का समुच्चय बराबर है:
वृत्त ${x^2} + {y^2} = 169$ के बिन्दुओं $(5, 12)$ तथा $(12, -5)$ पर स्पर्श रेखाओं के बीच का कोण ............. $^o$ है