The area of triangle formed by the tangent, normal drawn at $(1,\sqrt 3 )$ to the circle ${x^2} + {y^2} = 4$ and positive $x$-axis, is

  • [IIT 1989]
  • A

    $2\sqrt 3 $

  • B

    $\sqrt 3 $

  • C

    $4\sqrt 3 $

  • D

    None of these

Similar Questions

The tangent$(s)$ from the point of intersection of the lines $2x -3y + 1$ = $0$ and $3x -2y -1$ = $0$ to circle $x^2 + y^2 + 2x -4y$ = $0$ will be -

The equations of the normals to the circle ${x^2} + {y^2} - 8x - 2y + 12 = 0$ at the points whose ordinate is $-1,$ will be

Let $PQ$ and $RS$ be the tangent at the extremities of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $(PQ.RS)$ is equal to

$x = 7$ touches the circle ${x^2} + {y^2} - 4x - 6y - 12 = 0$, then the coordinates of the point of contact are

An infinite number of tangents can be drawn from $(1, 2)$ to the circle ${x^2} + {y^2} - 2x - 4y + \lambda = 0$, then $\lambda = $