The excess of pressure inside a soap bubble than that of the outer pressure is
$\frac{{2T}}{r}$
$\frac{{4T}}{r}$
$\frac{T}{{2r}}$
$\frac{T}{r}$
If the excess pressure inside a soap bubble is balanced by oil column of height $2\; mm$, then the surface tension of soap solution will be ($r = 1 \,cm$ and density $d = 0.8\, gm/cc$)
Derive the formula for excess of pressure (pressure difference) inside the drop and bubble.
Consider the following two statement $A$ and $B$, and identify the correct choice in the given answers
$A :$ The excess pressure inside a small liquid drop is more than that of a big drop.
$B :$ As the aeroplane moves fast on the runway the pressure is more on the upper surface of its wings and less on the bottom surface of the wings.
The pressure of air in a soap bubble of $0.7\,cm$ diameter is $8\, mm$ of water above the pressure outside. The surface tension of the soap solution is ........ $dyne/cm$
The surface tension of soap solution is $25 \times {10^{ - 3}}\,N{m^{ - 1}}$. The excess pressure inside a soap bubble of diameter $1 \,cm$ is ....... $Pa$