સમીકરણની સંહતિ $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ ને એકાકી ઉકેલ ધરાવે તેનો આધાર . . . પર છે.

  • A

    માત્ર $\mu $

  • B

    માત્ર $\lambda $

  • C

    $\lambda $ અને $\mu $ બંને પર

  • D

    $\lambda $ કે $\mu $ બંને માંથી એકપણ પર આધારિત નથી

Similar Questions

નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(-2,-3),(3,2),(-1,-8)$

જો $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ તો આપલે પૈકી ક્યો સંબંધ સાચો છે .

જો રેખીય સમીકરણો $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$ અનંત ઉકેલ ધરાવે છે તો  $\lambda  + \mu $ ની કિમંત મેળવો.

  • [JEE MAIN 2019]

ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.

  • [AIEEE 2009]

જો રેખાઓ  $x + 2ay + a = 0, x + 3by + b = 0$ અને  $x + 4cy + c = 0$ એ સંગામી રેખાઓ હોય તો $a, b$ અને  $c$ એ  .. .. શ્રેણીમાં હોય .