निकाय $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ के अद्वितीय हल का अस्तित्व निर्भर करता है
केवल $\mu $ पर
केवल $\lambda $ पर
$\lambda $ और $\mu $ दोनों पर
न तो $\lambda $ और न ही $\mu $ पर
यदि $\left|\begin{array}{ccc} a - b - c & 2 a & 2 a \\ 2 b & b - c - a & 2 b \\ 2 c & 2 c & c - a - b \end{array}\right|=( a + b + c )$ $( x + a + b + c )^{2}, x \neq 0$ तथा $a + b + c \neq 0$ हो, तो $x$ बराबर है
सारणिक $\left| {\,\begin{array}{*{20}{c}}{10!}&{11!}&{12!}\\{11!}&{12!}&{13!}\\{12!}&{13!}&{14!}\end{array}\,} \right|$ का मान होगा
माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है
रैखिक समीकरण निकाय $\lambda x+2 y+2 z=5$, $2 \lambda x+3 y+5 z=8$, $4 x+\lambda y+6 z=10$
यदि $\alpha+\beta+\gamma=2 \pi$ है, तो समीकरण निकाय
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$