The Fig shows a relation between the sets $P$ and $Q$. Write this relation 

in set - bulider form,

What is its domain and range ?

878-s25

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is obvious that the relation $R$ is $" x$ is the square of $y''$

In set-builder form, $R =\{(x, y): x$ is the square of $y, x \in P, y \in Q\}$

878-s25

Similar Questions

Let $A=\{1,2,3, \ldots, 14\} .$ Define a relation $R$ from $A$ to $A$ by $R = \{ (x,y):3x - y = 0,$ where $x,y \in A\} .$ Write down its domain, codomain and range.

The Fig shows a relationship between the sets $P$ and $Q .$ Write this relation

in set-builder form 

What is its domain and range?

Let $R$ be a relation from $N$ to $N$ defined by $R =\left\{(a, b): a, b \in N \text { and } a=b^{2}\right\} .$ Are the following true?

$(a, b) \in R ,(b, c) \in R$ implies $(a, c) \in R$

Given two finite sets $A$ and $B$ such that $n(A) = 2, n(B) = 3$. Then total number of relations from $A$ to $B$ is

Let $R$ be a relation from $Q$ to $Q$ defined by $R=\{(a, b): a, b \in Q$ and $a-b \in Z \} .$ Show that

$(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$