જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ અને $(b, c) \in R$ તો $(a, c) \in R$
જો $A = \{1, 2, 3\}$ તો $A$ પરના ભિન્ન સંબંધની સંખ્યા મેળવો.
જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A$ થી $B$ ના સંબંધની સંખ્યા શોધો.
$R$ એ $Z$ પર $R = \{ (a,b):a,b \in Z,a - b$ એ પૂર્ણક છે. $\} $ દ્વારા વ્યાખ્યાયિત છે. $R$ નો પ્રદેશ અને વિસ્તાર મેળવો.
$A=\{1,2,3, \ldots, 14\} .$ $R = \{ (x,y):3x - y = 0,$ જ્યાં $x,y \in A\} .$ જો એ $A$ થી $A$ નો સંબંધ હોય, તો $R$ નો પ્રદેશ, સહપ્રદેશ અને વિસ્તાર મેળવો.