The following travelling electromagnetic wave $E_x=0$ $E_y=E_0 \sin (k x+\omega t), E_z=-2 E_0 \sin (k x-\omega t)$ is
elliptically polarised
circularly polarised
linearly polarised
unpolarised
If frequency of electromagnetic wave is $60 \mathrm{MHz}$ and it travels in air along $\mathrm{z}$ direction then the corresponding electric and magnetic field vectors will be mutually perpendicular to each other and the wavelength of the wave (in $\mathrm{m}$ ) is :
An $EM$ wave propagating in $x$-direction has a wavelength of $8\,mm$. The electric field vibrating $y$ direction has maximum magnitude of $60\,Vm ^{-1}$. Choose the correct equations for electric and magnetic fields if the $EM$ wave is propagating in vacuum
A beam of light travelling along $X$-axis is described by the electric field $E _{ y }=900 \sin \omega( t - x / c )$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7}\,ms ^{-1}$ will be.
[Given speed of light $=3 \times 10^{8}\,ms ^{-1}$ ]
In an $EMW$ phase difference between electric and magnetic field vectors $\vec E$ and $\vec B$ is
A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$