The frequency of vibration of string is given by $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$. Here $p$ is number of segments in the string and $l$ is the length. The dimensional formula for $m$ will be
$[{M^0}L{T^{ - 1}}]$
$[M{L^0}{T^{ - 1}}]$
$[M{L^{ - 1}}{T^0}]$
$[{M^0}{L^0}{T^0}]$
Match List $I$ with List $II$
List $I$ | List $II$ |
$A$ Torque | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ Magnetic fileld | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ Magneti moment | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ permeability of free space | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |
Choose the correct answer from the options given below :
Match List $I$ with List $II$
List $I$ | List $II$ |
$(A)$ Young's Modulus $(Y)$ | $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$ |
$(B)$ Co-efficient of Viscosity $(\eta)$ | $(II)$ $\left[ M L ^2 T ^{-1}\right]$ |
$(C)$ Planck's Constant $(h)$ | $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$ |
$(D)$ Work Function $(\phi)$ | $(IV)$ $\left[ M L ^2 T ^{-2}\right]$ |
Choose the correct answer from the options given below:
The dimensions of permittivity ${\varepsilon _0}$ are
What is dimension of a physical quantity ?
In $SI\, units$, the dimensions of $\sqrt {\frac{{{ \varepsilon _0}}}{{{\mu _0}}}} $ is