દોલનો કરતી દોરીની આવૃત્તિ $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ છે,જયાં $p$ દોરીમાં ગાળાની સંખ્યા અને $l$ લંબાઇ છે.તો $m$ નું પારિમાણીક સૂત્ર શું થાય?
$ [{M^0}L{T^{ - 1}}] $
$ [M{L^0}{T^{ - 1}}] $
$ [M{L^{ - 1}}{T^0}] $
$ [{M^0}{L^0}{T^0}] $
બે ભૌતિક રાશિઓ $A$ અને $B$ એકબીજ સાથે $\mathrm{E}=\frac{\mathrm{B}-\mathrm{X}^2}{\mathrm{at}}$ સંબંધ ધરાવે છે. જ્યાં, $\mathrm{E}, \mathrm{X}$ અને $\mathrm{t}$અનુક્રમે ઉર્જા, લંબાઈ અને સમયના પરિમાણો ધરાવે છે તો $\mathrm{AB}$ ના પરિમાણ..........
એક લાક્ષણિક દહનશીલ એન્જીન (કંબશન એન્જીન) માં વાયુનાં અણુ દ્વારા થયેલ કાર્યને $W=\alpha^{2} \beta e^{\frac{-\beta x^{2}}{k T}}$ દ્વારા આપવામાં આવે છે જ્યાં $x$ સ્થાનાંતર, $k$ બોલ્ટ્ઝમેન અચળાંક અને $T$ તાપમાન દર્શાવે છે. જો $\alpha$ અને $\beta$ અચળાંકો હોય, તો $\beta$ નું પરિમાણ ......... હશે.
એક સ્થિત તરંગ માટેનું સમીકરણ $y=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi x}{\lambda}\right)$ નીચેનાંમાંથી ક્યું સાચું નથી ?
માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?
એક તંત્રના મૂળભૂત એકમો ઘનતા $[D]$, વેગ $[V]$ અને ક્ષેત્રફળ $[A]$ છે. તો આ તંત્રમાં બળનું પારિમાણિક સૂત્ર શું થાય?