तार के कम्पन की आवृत्ति $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ से दी जाती है। यहाँ $p$ तार के लूपों की संख्या एवं l लम्बाई है। $ m$ का विमीय सूत्र होगा
$[{M^0}L{T^{ - 1}}]$
$[M{L^0}{T^{ - 1}}]$
$[M{L^{ - 1}}{T^0}]$
$[{M^0}{L^0}{T^0}]$
यदि लम्बाई की विमायें ${G^x}{c^y}{h^z}$ से प्रदर्शित की जाती हैं, जहाँ $G,\,c$ और $h$ क्रमश: सार्वत्रिक गुरुत्वाकर्षण नियतांक, प्रकाश का वेग और प्लांक नियतांक हैं, तो
यदि $v$ चाल, $r = $ त्रिज्या तथा $g$ गुरुत्वीय त्वरण हो तो विमाहीन राशि होगी
एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$
जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं
एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।