तार के कम्पन की आवृत्ति $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ से दी जाती है। यहाँ $p$ तार के लूपों की संख्या एवं l लम्बाई है। $ m$ का विमीय सूत्र होगा
$[{M^0}L{T^{ - 1}}]$
$[M{L^0}{T^{ - 1}}]$
$[M{L^{ - 1}}{T^0}]$
$[{M^0}{L^0}{T^0}]$
यदि किसी द्रव की बूँद के कम्पन का आवर्तकाल $(T)$, बूंद के पृष्ठ-तनाव $(S)$, त्रिज्या $(r)$ एवं घनत्व $(\rho )$ पर निर्भर करता हो तो आवर्तकाल $(T)$ का व्यंजक है
यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:
$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$
जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:
मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें