The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is

  • A

    $0$

  • B

    $-1$

  • C

    $-2$

  • D

    $-3$

Similar Questions

Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$

If the function $f(x) = a{x^3} + b{x^2} + 11x - 6$ satisfies the conditions of Rolle's theorem for the interval $[1, 3$] and $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, then the values of $a$ and $b$ are respectively

If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval $[-1, 1 ]$ for the point $c = \frac{1}{2}$ , then the value of $2a + b$ is

  • [JEE MAIN 2014]

If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to

Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval