The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is
$0$
$-1$
$-2$
$-3$
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$
Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$
Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$
The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$ and $(4, 1)$ is
If $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall x \in R$ and $f"(x) > 0, \forall x \in R$ , then $g'(x) > 0$ for $x$ belonging to
For a polynomial $g ( x )$ with real coefficient, let $m _{ g }$ denote the number of distinct real roots of $g ( x )$. Suppose $S$ is the set of polynomials with real coefficient defined by
$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\} \text {. }$
For a polynomial $f$, let $f^{\prime}$ and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(m_f+m_{f^{\prime}}\right)$, where $f \in S$, is. . . . . . . .